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An expression for the entropy as a power series in the order parameter is 
derived in the context of molecular field theory. The expression is valid both at and 
away from equilibrium. It is a unique generalization of molecular field theory to 
non-equilibrium situations. Discrepancies with certain expressions which have 
appeared in the literature are resolved. Analysis of the radius of convergence of the 
power series indicates that in certain cases, including the Maier-Saupe model of 
liquid crystals, molecular field theory and Landau theory cannot be made to agree 
over the entire range of possible values of the order parameter. 

1. Introduction 
Students of liquid crystals, when faced with a problem concerning the onset of 

nematic behaviour, almost always start by attempting to interpret their results in 
terms of one of two canonical perspectives. Phenomenologists turn to the Landau4e 
Gennes theory [ 11 which is based on a power law expansion of the relevant free energy 
in terms of a nematic order parameter. By contrast those who prefer microscopic 
theory will begin by seeking to apply the appropriate molecular field theory, first 
developed by Maier and Saupe [2]. Both models have their limitations, but they have 
been sufficiently successful to play a powerful role in our understanding of liquid- 
crystalline behaviour. For some purposes it is interesting to examine the relationship 
between these two perspectives, and, in particular, to map the parameters of one on 
to the other. It is this problem which we address in this paper. 

Our interest in this problem originates from attempts to interpret results of 
experiments conducted in part by one of us [3]. These experiments probe, using 
N.M.R. spectroscopy, the pretransitional regime just above the isotropic-nematic 
transition. A particular concern was the interpretation of the field-induced Saupe 
ordering matrix of a biaxial solute in a nematogenic solvent. It became apparent that, 
if the commonly accepted interpretations of Landau theory and Maier-Saupe 
theory were applied, contradictory answers were obtained. Clarification of this point 
demanded further examination of the models for the simpler and more commonly 
discussed nematic phase composed of uniaxial molecules. 

The most fundamental difference between the framework provided by Landau 
theory and that of molecular field theory is this. The former starts from a postulated 
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338 J. Katriel er al. 

free energy expression in terms of an order parameter, valid at arbitrary temperature 
and for arbitrary (though in some sense small) order parameter, whereas the latter 
only provides information about the equilibrium states of the system. The problem of 
principle we consider is the derivation of the non-equilibrium Landau expansion, 
given the equilibrium molecular field equations. While the framework of our discussion 
applies to the derivation of the Landau free energy for a wide range of molecular field 
theories, we shall stress the application to the simple nematic phase of uniaxial 
particles. As far as we are aware ours is the first complete and coherent discussion of 
this problem, although considerations similar in spirit to ours exist in the literature 
in several statistical mechanical contexts [4]. 

One of our aims is, by setting up the basic framework in sufficient detail, to sort 
out the various ambiguous and sometimes erroneous considerations and results which 
are scattered in the relevant literature. The general (non-equilibrium) expression we 
derive for the entropy is totally independent of the form of the system hamiltonian, 
depending only on the nature of the order parameters involved. It is only after the 
equilibrium values of the order parameter have been substituted, that the entropy 
becomes an explicit function of the temperature, involving the hamiltonian par- 
ameters. Furthermore, our analysis has led to certain intriguing observations concern- 
ing the radius of convergence of the power series expansions of the molecular field 
entropies. In particular, the Maier-Saupe theory results in an expansion whose radius 
of convergence is approximately 0.49 whereas the range of variation of the second 
rank order parameter is 0 < p2 < 1. This implies that in a certain sense molecular- 
field and Landau-de Gennes theories cannot agree for situations involving a large 
value of the nematic order parameter. 

This paper is organized as follows. In $2 we describe how a general molecular field 
theory for an arbitrary system implies the existence of a unique free energy for that 
system as a function of the parameter defining the order in the system, and how this 
is related to the Landau expansion for that system. Some relevant but elementary 
technicalities concerning the inversion of power series are presented in $3. In $4 we 
describe the nematic liquid crystal composed of uniaxial particles. In $4.1 we define 
the model employed, and translate the results of $2 into the language of nematic liquid 
crystals. In $4.2 we explain how these results can be used to generate the Landau4e 
Gennes expansion of the free energy as a function of a nematic order parameter. In 
$5 we make some concluding remarks. Appendix A contains an analogous analysis for 
ferromagnetic systems. In Appendix B we present the general formalism, applicable 
to a system specified by a set of order parameters. In Appendix C we make a detailed 
exhaustive comparison between our results and those of other authors who have 
considered this problem, and explain why they obtain different solutions. 

2. Free energies within molecular field theories 
The core of our argument lies in this section, which is very general and applies to 

all simple molecular field theories. We suppose that the system under consideration 
consists of N particles, each of which may take any position, and that at any position 
each particle may exist in one of M states; these might, for example, correspond to 
its orientation. For systems with continuous symmetry, such as classical Heisenberg 
magnets and liquid crystals, M goes to infinity in a particular way, but this is a detail 
that need not concern us here. We label these states by i = I ,  2, . . . , M ,  and suppose 
for simplicity that the system remains translationally invariant in all phases, a 
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Landau and molecular field free energies 3 39 

condition which is also not essential to the argument. In the high temperature phase 
the symmetry of the system remains unbroken, and the probability of occurrence of 
state i is 1/M. In the low temperature phase this will not be the case and in general 
state i will have a normalized probability p i .  This phase is marked by the existence of 
one or more non-zero order parameters. At this stage we consider just one of these 
which we label Q; this is the mean of some molecular quantity Q, 

M 

i=  I 

with 

Equation (2.2) merely states that the order parameter vanishes in the high tem- 
perature phase. The entropy S of a phase defined by the set of probabilities { p , } ,  
neglecting correlation between the particles, is given by - k Cip i lnp i ;  we are interested 
in the entropy change, AS, between the phase with broken symmetry and the isotropic 
phase 

A S  = - k C p,In(Mp,), 
1 

where k is the Boltzmann constant. 
There are many hamiltonians consistent with the system thus described. An 

approximation is adopted which gives the contribution of the broken symmetry to the 
energy per particle as a functional of the order parameter; we call this H ( Q ) .  In 
general we do not enquire too closely into the origin of H(Q) ,  although we note that 
in principle there may be a consistent scheme of approximation which maps many 
microscopic hamiltonians onto the same H ( Q ) .  There is a particular case where it has 
been shown that H ( Q )  is exact [5 ] ;  this is when the microscopic hamiltonian is 

where the sum is taken over all particle pairs { m n } .  The interaction is long-ranged, all 
particles are equivalent, there are no interparticle correlations, and 

In consequence 

H(Q) = iYf”/N, 

= -+uQ’ (2.6) 
if the thermodynamic limit is taken on going from equation (2.5) to equation (2.6). 
Having introduced the order parameter dependent hamiltonian H(Q)  and the entropy 
difference we write the free energy difference 

A A  = H ( Q )  + kTxp i In (Mpi ) ,  
I 

subject to the constraints 

1 P i  = 1 
I 
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340 J. Katriel er al. 

and 

I 

The normal procedure would now be to minimize the free energy difference 
directly with respect to the order parameter, e. However, we prefer to perform the 
minimization in two distinct steps; the first of these is to maximize the entropy 
difference, AS({pi}), with respect to {pi} for a fixed e. This will yield a function 
AS(Q) and only at this stage do  we minimize the free energy difference 

A A  = H(Q) - TAS(Q) 

directly with respect to 0. The reason for this apparently contorted procedure will 
become apparent as the derivation evolves. 

Maximizing AS({ p i } )  we obtain 

= (MZ)-'exp (~Qi> l  
where the single particle partition function is 

Z = M- '  Cexp(qQi) 
i 

and q is a lagrangian multiplier determined by 

(Mz1-l C QiexP(tlQi) = 
i 

We note the last equation may be written in the form 

0 = ain zlaq = w(q). (2.11) 

The entropy difference can now be written in terms of q, using equations (2.3) and 
(2.81, 

A S  = - k C piln (Mpi),  
i 

= k ( h Z  - qQ), (2.12) 

which is an explicit function of q through equations (2.9) to (2.11). 
At this stage we make some further comments about the method which we have 

adopted. The lagrangian multiplier q has, as yet, no physical significance although 
from the previous equations it is seen to play a crucial role in the theory. For example, 
the probability distribution function pi always has the same form, given by equation 
(2.8). However we have no numerical information about q because we have yet to 
make any assumptions concerning the hamiltonian H(&) appropriate for the system. 
None the less if we did know q, then we could evaluate from equations (2.1 1) and 
(2.12) the values of the order parameter and the entropy difference. The universal 
form of the distribution function follows from the principle of maximum entropy and 
AS is the maximum entropy difference the system could possess, consistent with a 
particular value of Q. Indeed A S  is the entropy difference the system would have at 
equilibrium if by some procedure we could ensure that 0 was the corresponding order 
parameter. 

The problem, however, is that A S  is a function of q and not of Q, although we 
could write A S  as a function of 0 if we could invert equation (2.11) to produce a 
function 

tl = f@>. (2.13) 
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Landau and molecular field free energies 34 1 

This can be achieved as we now demonstrate. W(q) can be inverted if aW(q)/aq has 
the same sign everywhere; however 

a w(q)/aq = az In Z/aqz, 

(2.14) 

and so 

a W ( t l ) / a ~  = 1 (Qf - @’)Pi ,  
I 

= C (Q i  - Q>*Pi, (2.15) 
i 

which is the variance of the variable Qi; this is, of course, positive definite. Hence 
aW/aq is positive everywhere and the inverse function f ( @ )  exists. It turns out 
however that equation (2.12) is not the most convenient form to describe AS(@) .  
From equation (2.12) observe that 

(2.16) 

which from equation (2.1 1) implies that 

aAs/a@ = -kq ,  

= - k f < @ >  (2.17) 

and hence that 

(2.18) 

At this point we stress that the functional forms of W(q), f ( @ )  and A S ( @ )  are entirely 
independent of the form of the hamiltonian, but do depend on the magnitude of M 
and the behaviour of the quantities Qi associated with the order parameter, 8. This 
is expected if A S ( @ )  is to be interpreted as the entropy of a state characterized by the 
order parameter @, irrespective of whether this is an equilibrium or a non-equilibrium 
state. 

The free energy is now minimized with respect to 6, to give 

aA/a@ = aH/a@ + k T f ( @ )  = 0. (2.19) 

This equation can now be inverted to obtain the standard molecular field equation for 
the order parameter 

(2.20) 

at which stage we can identify the lagrangian multiplier q as - ( l / kT) (aH/a@) .  Now 
- aH/a@ is what is generally called the mean or molecular field, and so the quantity 
- kTq is essentially that molecular field, required at a given temperature, to impose a 
particular value of @ on the system. Using equations (2.7) and (2.18) we then obtain 

(2.21) 
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342 J. Katriel et al. 

This, however, is the most general form of AA(Q) that we can obtain, because the 
formula for Z(q) varies depending on the type of order parameter, and so no universal 
formula for f ( Q )  can be derived. 

The Landau expansion for AA(Q) is the expansion of equation (2.21), or equiv- 
alently equation (2.12), in powers of 0. This involves the power series expansion of 
f ( Q ) ,  which can be derived using equations (2.9), (2.1 1) and (2.13) for an expansion 
of Z(q). The general expansion procedure is presented in the following section. The 
nematic liquid crystal case is treated in detail in $4, and magnetic systems are 
discussed in Appendix A. In all cases, however, we expect a series of the form [6] 

MQ) = t a m  Q' + 3 0 3  (T)Q' + $a4(T)Q4 + . . . , (2.22) 

where Q is a scalar order parameter, and is perhaps the magnitude of some vectorial 
or tensorial order parameter. The presence or absence of terms of a given order in Q 
is dictated by the existence or otherwise of invariants of the vectorial or tensorial order 
parameter of that order. The series begins at a, so that Q = 0 corresponds to a 
minimum of AA(Q)  at high temperatures, and the order and position of a phase 
transition to non-zero 

The generalization of the considerations of this section to the case where there are 
several order parameters is relatively straightforward, though we postpone the math- 
ematical details to Appendix B. If there are a set of P order parameters {Q"} 
corresponding to molecular quantities { Q;} in state i, then there will be P lagrangian 
multipliers {q"}. By analogy with equations (2.9) and (2.11) 

is governed by the variation of the set {a i (T)} .  

= M - '  xexp(q"Q;), i (2.23) 

where we adopt a summation convention over repeated Greek indices. There is a set 
of functions { W,({qS}>}, which satisfy 

rz" = w,({r lS )>t  
= dlnZ/aq". (2.24) 

An inverse set of functions to W,({qS}) exists, so that 

rl" = f , ( { Q S > > .  (2.25) 

By analogy with equation (2.12) 

AS({Q'>) = k(1nZ - q"Q"), (2.26) 

A 4 Q " 1 )  = H((Q"1) - TAS({Q">> (2.27) 
and an analogous form to equation (2.18) also exists. 

One particular feature of this generalization is of some interest. Consider a low 
temperature phase in which the set of order parameters {p} is non-zero. One of 
these, however, el, say, is generally regarded as being the most important, indeed 
H = H ( Q l ) ,  and for many purposes it suffices to carry through the analysis of the 
earlier part of this section to construct the free energy difference functional 

AA(Q')  = H ( Q ' )  - TAS(&').  (2.28) 

We now ask what the relationship is between the functions AA[{Q"} ]  defined in 
equation (2.27) and AA(Q1)  defined in equation (2.28). It can be shown rather easily, 
and is intuitively clear that 

A A ( 0 ' )  = Min AA({Qa}). (2.29) 
r e . , u # l )  
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Landau and molecular field free energies 343 

In this situation 

aAA/aQ" = 0, u # I ,  

which corresponds to all lagrangian multipliers q' = 0 for u # 1,  and thus 

pi = Z-'exp(qlQl), (2.30) 
as in equation (2.8). In general when this occurs 0" # 0 for u # 1; rather the values 
of {Q'} will be prescribed by the value of and thus by Ql. One experimental test 
of the assumption that H = H ( Q ' ) ,  is whether or not {Q"} show the expected 
functional dependence on Q'. 

We return to a discussion of the many-order parameter case in Appendix C in the 
particular context of nematic liquid crystals. 

3. Power series expansion of the molecular field entropy 
For a system specified by means of a single order parameter, Q, molecular field 

theory results in the self-consistency equation Q = W(q), (cf. equation (2.1 I)). The 
resulting expression for the entropy difference is equation (2.16). In order to obtain 
the power series expansion for the entropy difference in terms of the order parameter 
Q we write 

and invert this series into 

(3.1) 

(3.2) 

Equation (3.2) can now be substituted in equation (2.16) to obtain a power series 
expansion for the entropy difference between the ordered and isotropic phase. 

The inversion of equation (3.1) into equation (3.2) is carried out by substituting 
the former in the latter and obtaining 

or 

( ? j i = j ;  ~iji=p , p =  1,2,3 , . . . ,  
i ) (3.4) 

where 
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is the multinominal coefficient. Thus 

etc. Explicit expressions for fli (i = 1,2, . . . ,7) are given in Abramowitz and Stegun 

For vectorial order parameters, such as the magnetization, the power series for 0 
involves odd order terms only. The same must be true for the power series for the 
associated q. Thus, given 

[71. 

we obtain 

with 

82p-I  = % I  - I 

e =  
i= I 

j -  I 

(3.5) 

(3.7) 

4. Nematic liquid crystals 
4.1. The molecular field equations 

In this section we concentrate on the free energy difference functional in nematic 
liquid crystals. We do so by interpreting the results of 92 in a liquid crystal context. 
We first specify the model. The molecules are uniaxial. The axis of each molecule may 
point in a direction l(o) where the solid angle o is defined by two Euler angles 8, 4 
which take their conventional meaning, so that the unit vector has components 

(4.1) 

The state of the material is defined by the singlet, orientational distribution function 
f ( o ) ,  which is the analogue of the probabilities { p , }  in 42. In the high temperature 
isotropic phase all molecular orientations are equally likely andf(o) = 1/4n. In the 
low temperature nematic phase some orientations are preferred, and the entropy 
change per particle associated with this is 

T(o) = (sin ocos 4, sin 8sin 4, cos 8). 

AS = - k  f(w)ln[4af(o)]doy (4.2) s 
which is the continuum analogue of equation (2.3). We observe that the sum has 
become an integral, and the factor M, the number of possible states, is replaced by 
the normalizing factor 411. 

We shall suppose the low temperature phase to be distinguished by an axis of 
symmetry, the director A, which conventionally lies along the z axis, and an infinite 
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p2,  = P2,(cos0) f ( w ) d w ,  n = 1,2,. . . , I (4.3) 

where the P,(cos 0) are the Legendre polynomials of order 1. Of these, p2 is by far the 
most important both from a theoretical and experimental point of view, and is often 
referred to as the nematic order parameter. In so far as is possible we shall also follow 
this convention, and identify p ,  with the quantity Q in equation (2.1). Finally, we 
require the anisotropic contribution to the energy per particle H = H ( P 2 )  which in 
the classical Maier-Saupe theory is taken to be 

H = -1up2  2 2 .  (4.4) 

A A ( P 2 )  = - +up; + kT f (w)  In [4n f (o)] d o .  (4.5) 

Thus 

s 
In the spirit of 52 we merely postulate the form of H ( P , )  without inquiring into its 
origin. 

The theory encompassed in the functional given by equation (4.5) can now be 
regarded as an example of the archetypal molecular field theory whose properties we 
have enunciated in 52. Thus if P2 is identified with e, then P,(cos 0) plays the role of 
Qi, and carrying over the results of equations (2.9) to (2.19) we obtain, for the 
molecular field equations, 

f (0) = (4nZI-I exp [tlzP2(cos e)l, (4.6 a) 

Z(q2) = (4n)- I exp [rlZPZ(COS 011 do ,  (4.6 6 )  

(4.6 c) 

s 
p2 = wMS(qZ) = a1nz/a?2, 

where the Maier-Saupe function [2,8] WMs(q2) is given by 

(4.7) 

and 

iJn 
D( y) = exp ( - y’) exp (2’) dz = -exp ( y’) erf (iy) 

is the Dawson integral [7]. As we have described in 82 an inverse function fMs(Pz )  to 
the function WMs(q2) exists, and 

1 2 

As = - k  s : f M S ( e ) d @ *  (4.8) 

The free energy difference is, from equation (2.21), 

or from equation (2.12) 

AA(p2) = H ( p 2 )  + kT(q2p2 - lnZ), (4.10) 
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346 J. Katriel et al. 

where we recall, from equation (2.20), that in equilibrium, but only in equilibrium, 

4.2. The Landatt-de Gennes expansion 
As has been discussed extensively elsewhere [ 1,9,10] the simplest non-trivial order 

parameter characterizing the nematic phase composed of uniaxial particles, under 
discussion here, is 

Q, = 4 ( 3 @  - S,), (4.1 1) 

where 1 denotes the molecular orientation of a molecule and 6 is its component in 
direction i for an arbitrary laboratory frame; the angular brackets indicate an average 
over all molecules. In the nematic phase this may be written in a suitable principal axis 
system as 

Q, = +Q(3riirij - dij), (4.12) 

where A is identified as the nematic director and 

Q = F 2 .  (4.13) 

Now the Landau-de Gennes expansion of,the free energy difference for a uniform 

AA(Qij) = f i Q i j Q i j  + h Q i j Q j k Q , i  + h(Qi/Qij)' + * * . 3 (4.14) 

where the A are functions of temperature. When equation (4.12) is substituted into 
equation (4.14), we obtain, as usual, equation (2.22) 

fluid is constructed from polynomial invariants of 0, as 

AA(F2)  = + a z ( T ) P :  + fa3(T)E':  + ia.,(T)F; + . . . . (4.15) 

We now proceed to analyse equations (4.6) to (4.8) in order to compare the formula 
for A A ( P 2 )  given in equation (4.9) with the Landau-de Gennes expansion given by 
equation (4.15). 

The Maier-Saupe function can be written in the form 

(4.16) 
1 1  1 

K & z )  = -- - - 
212 2 + 2qz E [(-3t/2)"/(2n + I)!!]. 

n=O 

To write this as a power series in qz we set 

which results in 

that is 

(4.17) 

(4.18) 
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Since 

a,, = (-3)”/(2n + l ) ! ! ,  

we obtain 

b 0 = 1; b, = - 1 ;  b 2 = 2 ;  5 3  b = --”; 3 5  . . .  . (4.19) 

Substituting in equation (4.16) we obtain 

- 1614583 9 

5’ * 73 - 1 l 2  * 13 - 17 - 19 q 2 ’  
(4.20) 

Using equations (4.18) and (4.19) the coefficients of the power series for WMs(q2) were 
evaluated to order 67. Applying the root test [I61 for the radius of convergence of the 
power series we note that the series Ib,,-”” exhibits an oscillatory convergence 
towards R N 3.75. The value of the order parameter at the radius of convergence is 
P2 N W(3.75) N 0.69. This observation is of minor significance because there seems 
to be no context in which the use of the power series for the Maier-Saupe function 
has any advantage over the closed form expression. Note, however, that the situation 
is entirely different with respect to the power series expansion of the inverse Maier- 
Saupe function, which from equations (2.18) and (4.8), determines the power series 
for the entropy change associated with the nematic ordering, which enters into the 
Landau power series for the free energy difference. Recalling that the radius of 
convergence of a power series is unaffected by term-by-term integration we proceed 
to study the inverse Maier-Saupe function. 

Inverting the power series for the Maier-Saupe function, equation (4.20), by using 
equation (3.4), we obtain 

25 - 17.25 - 83.54P;  + 53*277*41  - 
7 3 * 1 1 - 1 3  p’ 

Pi - - 
73 * 1 1  q 2  = f(P2) = 5P2 - -Pi + - 7 49 

5’ * 19 - 29 
74 * 13 

- P,” + c,P: + cap,” + c9P,’ + . . . , (4.21) 

where 
C, = 113.27866, Cg = -227,42967, C9 = 465.98831. 

The last three coefficients have been obtained numerically. The radius of convergence 
of this expansion is estimated in figure 1 and is very close to R N 0.49 f 0.01. This 
means, of course, that a Landau type expansion can usually be used to study the 
system in the vicinity of the first order phase transition, at  which P2 - 0.4, but cannot 
be used over the whole nematic range. In particular it is unlikely that a unified Landau 
treatment of transitions from the nematic to more ordered phases, such as smectic and 
biaxial nematic, is valid. 

I t  follows, using equations (2.18) and (4.8), that the entropy reduction in the 
nematic phase relative to the isotropic phase is given by 

(4.22) 
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0.1 0.2 
I/n 

0.4 3 

Figure 1. In the root test the radius of convergence R of a seriesf(z) = Z, u,z" is given by 
R = lim x,, where x, = u;"". In this figure we plot x, against I/n for the inverse 
Maier-Saupe function. The dotted line indicates our extrapolation of x as  n + co and 
thus our estimate of R. 

n+m 

Hence, using equation (4.20), we obtain an equation of the form of equation (4.13), 
but with explicit parameters 

A A ( P 2 )  = k(T - T*)F; - EkTP; + B k T e  + . . . , (4.23) 

where 

kT* = u/5. 

This expression is not in accord with results obtained by other authors [9,13,14] and 
so in Appendix C we proceed to analyse the origin of these differences. 

5. Conclusions 
We have established that it is feasible to construct, within the framework of 

molecular field theory, an expression for the entropy difference which depends on the 
order parameter only and consequently is valid both at and away from equilibrium. 
The procedure employed depends on the monotonicity of the molecular field function, 
W,(x), which follows from its defining equation. The power series expansion obtained 
for the entropy (and thus the free energy) difference established the equivalence of this 
framework to Landau theory. It is interesting to observe that this equivalence is of 
limited validity because the radius of convergence of the power series expansion of the 
entropy difference in terms of the order parameter is sometimes smaller than the range 
of physically relevant values of the order parameter in question. The derivation of a 
generalized Landau free energy corresponding to a lattice gas model of a system 
exhibiting an isotropic, a nematic, a smectic A and a smectic C phase was very recently 
presented by Drossinos and Ronis [Iq. The system and approach they present are too 
different from ours to enable a detailed comparison. However, the observation they 
make concerning the inadequacy of a truncation into 4 to 8 terms, and, in particular, 
the fact that increasing the order of truncation (within the above range) does not 
necessarily improve its agreement with the molecular field free energy, is consistent 
with our results concerning the radius of convergence of the Landau series corre- 
sponding to the Maier-Saupe model. On the other hand, the derivation of the entropy 
difference expansion from the molecular field equations reduces the problem of 
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specifying the free energy coefficients within the Landau model, to that of specifying 
the internal energy. The latter is typically represented by means of one or two 
independent coefficients only. 

Dr. T. J. Sluckin thanks Dr. J. T. Chalker of Southampton for helpful discussions. 
This work was supported in part by the Basic Research Foundation of the Israel 
Academy of Sciences. 

Appendix A 
Magnetic systems 

For a magnetic system consisting of elementary constituents with spin c the 
molecular field equation involves Brillouin's function 

where B,, are the Bernoulli numbers [8]. Defining Z = (20 + 1)2 we obtain the 
inverse expansion 

n 

with 

12 
h, = - z - 1' 

12* z + I 
5 (C - 1 1 3 '  

123 H(C* + I )  + 32c  
5 2 -  7 (C - 1 1 5  

h3 = - 

h, = - 

I Z 4  19(C3 + 1) + 107(C2 + C) 
6, = - 

53 - 7 (C - 1)' 

5 3 ' 7 2 *  1 1  (C - 119 

9 

12' * 3 173(C4 + 1 )  + 8 * 199(C3 + C) + 16 - 193C2 
b, = 

For Q = + the Brillouin function takes the particularly simple form 

s = +B,,2(+x) = +tanh(+x), 

which can be inverted explicitly to give 

Using the root test the radius of convergence of this series is 

1 ~ l/(Zn- I) 

R = l i m ( L )  = - 2' 
n + m  2n - 1 
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The same result is obtained using the ratio test 

(A 7) 
R = I i m J ( L / I V l l n )  = - 1 

n-w 2n - 1 2n + 1 2 '  

For c z f we can only estimate the radius of convergence off(s) on the basis of the 
coefficients available. The estimates are presented in figure 2; they suggest that R >, a. 
If this is true for arbitrary CT it implies that the power series expansion, that is a Landau 
type theory of sufficiently high order, can be used to obtain the magnetization curve 
over its complete range. 

2.01 

b \ I  
u) 

I 

I /n 
Figure 2. The radius of convergence of the power series expansion of the inverse Brillouin 

function, using the root test, as explained in the caption to figure 1. 

Situations in which higher order terms in the Landau expansion are of crucial 
relevance have been discussed by Galam and Birman [l I]. Furthermore, anisotropic 
spin systems can undergo phase transitions among ordered phases involving finite 
values of some components of the magnetization. The result which we have obtained 
concerning the radius of convergence of the Landau expansion guarantees that an 
appropriate Landau series can account for these situations, as well as for first order 
magnetic phase transitions involving arbitrarily high jumps in the magnetization. It 
is perhaps of some interest to mention that the radius of convergence of the power 
series for the Brillouin function itself can be determined by noting that 
coth [(a + f) x] has a singularity at x = i2n/(2a + 1) which means that the radius 
of convergence is R = 2n/(2a + I ) .  Note that the singularity of coth [(a + +) x] at 
x = 0 is cancelled by that of coth(x/2), in consequence the Brillouin function is not 
singular at this point. 

The maximum value of s/a which can be obtained by means of the power series 
for the Brillouin function is given by 

[exp(2n) - I] - {a[exp[2n/(2a 

A plot of s/a versus CT is presented in figure 3. We note 

= [exp(n) - I]/[exp(n) + 13 N 0.917 SI 0 a=1/2  

+ I)] - I ] } - ' .  (A8) 

5 < I ,  
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Figure 3. The maximum value of the magnetization which can be evaluated from the power 
series expansion of Brillouin's function, at the radius of convergence of the latter. 

where s/a is a monotonically decreasing function of 0, with 

lim s/a = 1 + 2/[exp(2n) - I ]  - n-' 'v 0.685. 
n-cx 

Thus, as a increases, the fraction of the physical range of magnetizations covered by 
the power series decreases. 

The value of s/a (a -, 00)  obtained is remarkably close to that found for P, at the 
radius of convergence of the power series for the Maier-Saupe function. Whether or 
not this has any deep significance remains to be seen. 

Appendix B 
Molecular field entropies for systems with several order parameters 

In  this Appendix we present the mathematical details of the extension of the 
argument of $2 to systems with several order parameters. We start with a set of P 
molecular quantities which take values {QP} in state i of the system, and to which are 
associated a set of order parameters {e"}, such that 

Q" = c QPP,.  
i 

The entropy difference 

A S  = - k C p i In(Mpi )  
I 

is to be maximized subject to the Pconstraints in equation (B 1) and the normalization 
condition. By the usual argument 

P ,  = ( M V '  exp ( v " Q 3  (B 3) 
where, as before, a summation convention is assumed over repeated Greek indices, 
{ f }  is a set of lagrangian multipliers, the single particle partition function is 

i 
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by exact analogy with equations (2.9) and (2.1 1). We observe that an elegant way of 
writing equation (B 5 )  is to suppose that the set {q"} form a vector q = (q', q2, . . . , q') 
and that similarly the set { @} form a vector 0, in which case equation (B 5 )  takes the 
form 

(B 6) 
using conventional vector notation. We now assert that the equations (B 5 )  and (B 6) 
can be inverted, under suitable rather sensible conditicns, giving 

d = v,,lnz(q) = W(q), 

?" = f,({&"}), (B 7 4 

q = f(0). (B 76) 

or 

The proof of this assertion is as follows. The inverse function theorem [12] states 
that equation (B5) can be inverted within a region of parameter space in which 
det (a Wu/aqa) does not change sign. Now 

= C P i ( Q 4  - Q'NQB - Qp> = ((Q" - Q")(Qs - Q p ) > .  (B9) 
I 

Suppose there is a certain q for which det (Nus)  = 0. Then at this point there exists 
a set of numbers { C, # 0}, such that 

CUMu, = (Cu(Q" - Q")(Qp - 0')) = 0. (B 10) 
Hence, in this case 

CuCpMap = 0 = (Cu(Q" - @I cp(Qa - &')>, 

= ([Cu(Q" - QU)l2>. (B 11) 

However the quantity ([C,(Q" - &")]*> is the mean of a positive quantity, which 
must itself be positive unless in each state i 

Cu(Q4 - Q") = 0. (B 12) 

CuQP = Cue;  = Ca@, (B 13) 

However, if equation (B 12) is true, then for each i, j 

= 0, (B 15) 
by the hypothesis that the average of the order parameter is zero when the system is 
in the high temperature phase. Thus det (Mup) = 0 can only occur at a point q when 
there exists a set { C,} such that in every state of the system i 

CuQ4 = 0, (B 16) 
or equivalently, if the set { &"} are not independent molecular variables. If, however, 
this is the case det (Map) = 0 for aff values of q. Thus, as long as we insist that the 
set { Q"} is a set of independent molecular variables, det (Mua) is non-zero everywhere, 
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and hence cannot change sign anywhere, and equations (B 5 )  and (B 6) can be inverted 
to give equations (B 7). Now we may substitute the form (B 3) for p i  into the entropy 
difference equation (B 2) to yield 

A S  = Qaqn - InZ, 

= d-q - InZ, (B 17) 

which is directly analogous to equation (2.12). 

(B 17) that 
A comparable equation to equation (2.21) can be derived by observing in equation 

= !Iu = f , ( Q  = [f(d)L. (B 18) 
This equation can be integrated directly to yield A S  in terms of a line integral in d 
space 

AS(d) = j L  dl - f(d’), 

where L is any line in d’ space starting a t  6’ = 0 and finishing at 6’ = d. Equation 
(B 19) may then be evaluated over whatever is the most convenient path. 

Appendix C 
Some sources of error in derivations of molecular field free energies 

Since the free energy difference expansion derived in this paper does not agree with 
certain expressions appearing in the literature, we now discuss the sources of these 
discrepancies. 

Method I 
This argument is used either explicitly or implicitly by Stephen and Straley [13], 

Chandrasekhar [9] and Palffy-Muhoray and Dunmur [14]. We start with the formula 
in equation (4.10) 

AA(I‘ , )  = H ( P , )  + kT(q2P2 - InZ). (4.10) 
In the Maier-Saupe model H = -+up; and so at equilibrium we have the relation- 
ship 

- uP,/kT. v 2  = - 
1 dH 

k T  dP2 
Hence, substituting for ‘1, in equation (4.10), gives 

AA(P, )  = +UP; - kTlnZ,  

where from equations (4 .6a)  and (C l),  Z is given explicitly in terms of P, as 

Equations (C 2) and (C 3) are commonly used convenient expressions for the equilib- 
rium free energy difference. 
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A Landau-de Gennes expansion in P2 is derived by treating AA(P2), as defined in 
equations (C 2) and (C 3), as a functional expansion in P2,  obtaining 

l u  1 u3 1 u4 
2 T  105 (kT)2 p; + -- P; + . . . , (C4) 700 (kT)' 

AA(P2) = - - ( T  - T*)Pi  - - - 

where T* = u/5k has the usual significance. It can be shown generally [14] that at 
T = T* the coefficients of the quadratic and cubic terms in p2 in equation (C 4) are 
identical to those of the expansion in equation (4.23), although the P; term is 
different, and hence that for T close to T* the use of this free energy difference to 
compute linear response to an ordering field gives results numerically close to those 
of the molecular field theory. 

Despite this partial success this approach should be treated with caution because 
it is formally incorrect. This can be seen in a number of different ways. First we note 
from equation (C I )  that equation (C 4) implies that the entropy associated with the 
configuration characterised by P,  is given as 

UP: u2 A S  = P:+ . . .  . 
T 10kT2 

However, the assumptions of molecular field theory imply that this is the single 
particle configurational entropy which should be independent of u. Equation (B 6) 
must therefore be incorrect. The error has arisen by taking AA(P,) as derived in 
equation (C l), which is a result, true only at equilibrium, and treating it as afunctional 
true for all P2 and which can then be differentiated to give the equilibrium value of 
P, .  It is essential to take the correct functional: equations (4.9) or (4.10). 

Method 2 
This has been employed by Palffy-Muhoray and Dunmur [ 141 who specifically 

noted the difference in predictions between Methods 1 and 2, and by one of us in a 
previous erroneous analysis [I 51. One starts with the correct formula in equation (4.5) 

AA[f(o)] = kT f(o) In [4nf(o)] dw - +up: s 
and notes that 

hence 

4nf(w) = 1 + :P ,P~(COS~)  + +P4p4(c0~e)  + . . . . (C 7) 

However, as the free energy difference is to be expanded in powers of P, ,  all terms in 
P2, for 1 2 2 are dropped, and In [4nf(w)] = In [l + +P2  P,(cos e)] is expanded in a 
power series in P 2 .  Equation (4.5) can now be written as a power series in P, ,  yielding 

AA(P2) = $k(T - T*)P: - EkTp;  + W k T P ;  + . . . . (C 8) 

This also differs from the true result in equation (4.23), although in this case only in 
the P; term. The problem here is the truncation of equation (C 7) at the F2 stage. This 
is equivalent to calculating AA(P2) subject to the constraint that P4, P6,  etc., will all 
be zero. We have discussed just such a problem in $2, in which P, corresponds to the 
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principal order parameter Q', and the other { F2,}  corresponds to the other { Q"}. 
From the analysis of Appendix B 

AA(P,) = MinAA(P,, { P , , } ) ,  (C 9) 

f ( w )  = ( ~ x z ) - '  exp [q2P2(c0s e)]  (C 10) 

(P211 

which requires the true distribution function 

for its evaluation. In contrast the free energy difference AA(P,, P,, = 0; I > 1) with 
its vanishing order parameters is only consistent with the simple distribution function 

j-(w) = ( 4 q i { i  + + ~ , ~ , ( c o s e ) } .  (C 11) 

It is clear that the two distribution functions and hence the free energy differences are 
not the same. 

In fact there is only a minor difference between equations (C 8) and  (4.23), which 
is equivalent to the observation that the higher rank order parameters F4, etc., are 
rather small. However, because equation (C 8) is the result of a constrained minimiz- 
ation, we expect that the free energy calculated in equation (C 8) is greater than the 
true free energy, and this can be seen explicitly by a comparison of the coefficients of 
the P: terms in the two expansions. 
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